Most industrial devices are engineered to operate smoothly and AVOID vibration, not produce it. In these machines, vibration can indicate problems or deterioration in the equipment. If the underlying causes are not corrected, the unwanted vibration itself can cause additional damage.
In this paper we are focused not on machines that are supposed to vibrate as part of normal operation, but on those that should not vibrate: electric motors, rotary pumps and compressors, and fans and blowers. In these devices smoother operation is generally better, and a machine running with zero vibration is the ideal.
Most common causes of machine Vibration
Vibration can result from a number of conditions, acting alone or in combination. Keep in mind that vibration problems may be caused by auxiliary equipment, not just the primary equipment. These are some of the major causes of vibration.
Imbalance A heavy spot in a rotating component will cause vibration when the unbalanced weight rotates around the machines axis, creating a centrifugal force. Imbalance could be caused by manufacturing defects (machining errors, casting flaws) or maintenance issues (deformed or dirty fan blades, missing balance weights). As machine speed increases the effects of imbalance become greater. Imbalance can severely reduce bearing life as well as cause undue machine vibration.
Misalignment/shaft runout Vibration can result when machine shafts are out of line. Angular misalignment occurs when the axes of (for example) a motor and pump are not parallel. When the axes are parallel but not exactly aligned, the condition is known as parallel misalignment. Misalignment may be caused during assembly or develop over time, due to thermal expansion, components shifting or improper reassembly after maintenance. The resulting vibration may be radial or axial (in line with the axis of the machine) or both.
Wear As components such as ball or roller bearings, drive belts or gears become worn, they may cause vibration. When a roller bearing race becomes pitted, for instance, the bearing rollers will cause a vibration each time they travel over the damaged area. A gear tooth that is heavily chipped or worn, or a drive belt that is breaking down, can also produce vibration.
Looseness Vibration that might otherwise go unnoticed may become obvious and destructive if the component that is vibrating has loose bearings or is loosely attached to its mounts. Such looseness may or may not be caused by the underlying vibration. Whatever its cause, looseness can allow any vibration present to cause damage, such as further bearing wear, wear and fatigue in equipment mounts and other components.ultrasonic welding machine--https://www.davison-machinery.com/products/ultrasonic-welder/
In this paper we are focused not on machines that are supposed to vibrate as part of normal operation, but on those that should not vibrate: electric motors, rotary pumps and compressors, and fans and blowers. In these devices smoother operation is generally better, and a machine running with zero vibration is the ideal.
Most common causes of machine Vibration
Vibration can result from a number of conditions, acting alone or in combination. Keep in mind that vibration problems may be caused by auxiliary equipment, not just the primary equipment. These are some of the major causes of vibration.
Imbalance A heavy spot in a rotating component will cause vibration when the unbalanced weight rotates around the machines axis, creating a centrifugal force. Imbalance could be caused by manufacturing defects (machining errors, casting flaws) or maintenance issues (deformed or dirty fan blades, missing balance weights). As machine speed increases the effects of imbalance become greater. Imbalance can severely reduce bearing life as well as cause undue machine vibration.
Misalignment/shaft runout Vibration can result when machine shafts are out of line. Angular misalignment occurs when the axes of (for example) a motor and pump are not parallel. When the axes are parallel but not exactly aligned, the condition is known as parallel misalignment. Misalignment may be caused during assembly or develop over time, due to thermal expansion, components shifting or improper reassembly after maintenance. The resulting vibration may be radial or axial (in line with the axis of the machine) or both.
Wear As components such as ball or roller bearings, drive belts or gears become worn, they may cause vibration. When a roller bearing race becomes pitted, for instance, the bearing rollers will cause a vibration each time they travel over the damaged area. A gear tooth that is heavily chipped or worn, or a drive belt that is breaking down, can also produce vibration.
Looseness Vibration that might otherwise go unnoticed may become obvious and destructive if the component that is vibrating has loose bearings or is loosely attached to its mounts. Such looseness may or may not be caused by the underlying vibration. Whatever its cause, looseness can allow any vibration present to cause damage, such as further bearing wear, wear and fatigue in equipment mounts and other components.ultrasonic welding machine--https://www.davison-machinery.com/products/ultrasonic-welder/
コメント